If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+0.6x-150=0
a = 1; b = 0.6; c = -150;
Δ = b2-4ac
Δ = 0.62-4·1·(-150)
Δ = 600.36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.6)-\sqrt{600.36}}{2*1}=\frac{-0.6-\sqrt{600.36}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.6)+\sqrt{600.36}}{2*1}=\frac{-0.6+\sqrt{600.36}}{2} $
| 4x-8=4x-4 | | 7e+12=145 | | x+(x*0.025)=2614.33 | | s*6+42=186 | | 9z-8=109 | | X2+y2=192 | | 365x-12=28 | | -7–3x=x–3 | | 34g=102 | | 34h=17 | | 4(4x+4)-5=27 | | 8^(2x+2)=2^(3x) | | 5x-14=4x-10 | | 2x-15=-3x-20 | | 9x+1=2x-20 | | 7x-7=x-49 | | 8x-16=x-2 | | x*4+34=90 | | x+4=-3x-8 | | (X^2+-2x+1)+-4=0 | | (X2+-2x+1)+-4=0 | | 5x+13=4(2x+3)-5 | | 4(2x-1)+2=4x+38 | | Y=12x+145 | | -x-2=5(2x+4) | | 5(3x+3)=-30 | | 8x-6=x-27 | | 8m=8+72 | | 8m+8=32 | | -2x+12=5(4x-2) | | -5x+35=80 | | -5x+15=5(x-5) |